
plProxy, pgBouncer,
pgBalancer

Asko Oja

Vertical Split
 All database access through functions requirement from the start
 Moved out functionality into separate servers and databases as load increased.
 Slony for replication, plpython for remote calls.
 As number of databases grew we ran into problems

 Slony replication became unmanageable because of listen/notify architecture
and locking.

 We started looking for alternatives that ended up creating SkyTools PgQ and
Londiste.

userdb
shopdb

shopdb

userdb userdb

shopdb

analysisdb

servicedb

Time

Vertical Split Picture

Horizontal Split
 One server could not service one table anymore
 We did first split with plpython remote calls
 Replaced it with plProxy language but it had still several problems

 complex configuration database

 internal pooler and complex internal structure

 scaleability issues

userdb

userdb_p2
userdb_p3

userdb_p0
userdb_p1

Time

userdb

userdb_p0 userdb_p1

userdb

userdb_p2 userdb_p3

userdb

plProxy Version 2

 plProxy second version

 just remote call language

 simplified internal structure

 added flexibility

 added features

 configuration and management
improved

 Connection pooling separated into
pgBouncer.

 Resulting architecture is

 Scaleable

 Maintainable

 Beautiful in it's simplicity :)

FrontEnd WebServer

pgBouncer

userdb

userdb_p0 userdb_p1

Overall picture

analysisdb backofficedb

proxydb
pgBouncer

proxydb
pgBouncer

pgBouncer

userdb_p01
SkyTools

userdb_p01
SkyTools

shopdb
SkyTools

shopdb_ro
SkyTools

queuedb
SkyTools

Online databases
● Proxy db's
● pgBouncers
● OLTP db's
● read only db's

batchdb

Support databases
● Queue db's
● Datamining
● Batchjobs
● Backoffice
● Greenplum

plProxy: Installation
 Download PL/Proxy from http://pgfoundry.org/projects/plproxy and extract.
 Build PL/Proxy by running make and make install inside of the plproxy directory. If

your having problems make sure that pg_config from the postgresql bin directory is
in your path.

 To install PL/Proxy in a database execute the commands in the plproxy.sql file. For
example psql -f $SHAREDIR/contrib/plproxy.sql mydatabase

 Steps 1 and 2 can be skipped if your installed pl/proxy from a packaging system
such as RPM.

 Create a test function to validate that plProxy is working as expected.

CREATE FUNCTION public.get_user_email(text) RETURNS text AS
$_$ connect 'dbname=userdb'; $_$
LANGUAGE plproxy SECURITY DEFINER;

plProxy Language

 The language is similar to plpgsql - string quoting, comments, semicolon at the
statements end.It contains only 4 statements: CONNECT, CLUSTER, RUN and
SELECT.

 Each function needs to have either CONNECT or pair of CLUSTER + RUN
statements to specify where to run the function.

 CONNECT 'libpq connstr'; -- Specifies exact location where to connect and
execute the query. If several functions have same connstr, they will use same
connection.

 CLUSTER 'cluster_name'; -- Specifies exact cluster name to be run on. The cluster
name will be passed to plproxy.get_cluster_* functions.

 CLUSTER cluster_func(..); -- Cluster name can be dynamically decided upon
proxy function arguments. cluster_func should return text value of final cluster
name.

plProxy Language RUN ON ...

 RUN ON ALL; -- Query will be run on all partitions in cluster in parallel.
 RUN ON ANY; -- Query will be run on random partition.
 RUN ON <NR>; -- Run on partition number <NR>.
 RUN ON partition_func(..); -- Run partition_func() which should return one or more

hash values. (int4) Query will be run on tagged partitions. If more than one partition
was tagged, query will be sent in parallel to them.

CREATE FUNCTION public.get_user_email(text) RETURNS text AS
$_$
 cluster 'userdb';
 run on public.get_hash($1);
$_$
LANGUAGE plproxy SECURITY DEFINER;

plProxy Configuration

 Schema plproxy and 3 functions are needed for plProxy

 plproxy.get_cluster_partitions(cluster_name text) – initializes
plProxy connect strings to remote databases

 plproxy.get_cluster_version(cluster_name text) – used by plProxy to
determine if configuration has changed and should be read again. Should be as fast
as possible because it is called for every function call that goes through plProxy.

 plproxy.get_cluster_config(in cluster_name text, out key text,
out val text) – can be used to change plProxy parameters like connection
lifetime.

CREATE FUNCTION plproxy.get_cluster_version(i_cluster text)
RETURNS integer AS $$
 SELECT 1;
$$ LANGUAGE sql SECURITY DEFINER;

CREATE FUNCTION plproxy.get_cluster_config(
 cluster_name text, OUT "key" text, OUT val text)
RETURNS SETOF record AS $$
 SELECT 'connection_lifetime'::text as key, text(30*60) as val;
$$ LANGUAGE sql;

plProxy: Get Cluster Partitions
CREATE FUNCTION plproxy.get_cluster_partitions(cluster_name text)
RETURNS SETOF text AS $$
begin
 if cluster_name = 'userdb' then
 return next 'port=9000 dbname=userdb_p00 user=proxy';
 return next 'port=9000 dbname=userdb_p01 user=proxy';
 return;
 end if;
 raise exception 'no such cluster: %', cluster_name;
end; $$ LANGUAGE plpgsql SECURITY DEFINER;

CREATE FUNCTION plproxy.get_cluster_partitions(i_cluster_name text)
RETURNS SETOF text AS $$
declare
 r record;
begin
 for r in
 select connect_string
 from plproxy.conf
 where cluster_name = i_cluster_name
 loop
 return next r.connect_string;
 end loop;
 if not found then
 raise exception 'no such cluster: %', i_cluster_name;
 end if;
 return;
end; $$ LANGUAGE plpgsql SECURITY DEFINER;

plProxy: Remote Calls

 We use remote calls mostly for read only queries in cases where it is not reasonable
to replicate data needed to calling database.

 For example balance data is changing very often but whenever doing decisions
based on balance we must use the latest balance so we use remote call to get user
balance.

 Another use case when occasionally archived data is needed together with online
data.

shopDB

userDB
get_email

balanceDB
get_balance

archiveDB
get_old_orders

plProxy: Remote Calls (update)

 plProxy remote calls inside transactions that change data in remote database
should have special handling

 no 2 phase commit
 some mechanism should be used to handle possible problems like inserting events

into PgQ queue and let consumer validate that transaction was committed or rolled
back and act accordingly.

shopDB

balanceDB
change_balance

balance
events

balance
change
handler

plProxy: Proxy Databases

 Additional layer between application and databases.
 Keep applications database connectivity simpler giving DBA's and developer's more

flexibility for moving data and functionality around.
 Security layer. By giving access to proxy database DBA's can be sure that user has

no way of accessing tables by accident or by any other means as only functions
published in proxy database are visible to user.

manualfixDb
(proxy)

internalDbshopDb userDB

backofficeDb
(proxy)

BackOffice
Application

plProxy: Run On All

 Run on all executes
query on all partitions in
cluster once. Partitions
are identified by connect
strings.

 Useful for gathering stats
from several databases
or database partitions.

 Also usable when exact
partition where data
resides is not known.
Then function may be run
on all partitions and only
the one that has data
does something.

CREATE FUNCTION stats._get_stats(
 OUT stat_name text,
 OUT stat_value bigint
) RETURNS SETOF record AS
$_$
 cluster 'userdb';
 run on all;
$_$
 LANGUAGE plproxy SECURITY DEFINER;

CREATE FUNCTION stats.get_stats(
 OUT stat_name text,
 OUT stat_value bigint
) RETURNS SETOF record AS
$_$
 select stat_name
 , (sum(stat_value))::bigint
 from stats._get_stats()
 group by stat_name
 order by stat_name;
$_$
 LANGUAGE sql SECURITY DEFINER;

plProxy: Geographical

 plProxy can be used to split database into partitions based on country code.
Example database is split into 'us' and 'row' (rest of the world)

 Each function call caused by online users has country code as one of the
parameters

 All data is replicated into internal database for use by internal applications and batch
jobs. That also reduces number of indexes needed in online databases.

onlinedb
(proxy)

onlinedb_US onlinedb_ROW backenddb

CREATE FUNCTION public.get_cluster(
 i_key_cc text
) RETURNS text AS
$_$
BEGIN
 IF i_key_cc = 'us' THEN
 RETURN 'oltp_us';
 ELSE
 RETURN 'oltp_row';
 END IF;
END;
$_$ LANGUAGE plpgsql;

plProxy: Partitioning Proxy Functions

 We have partitioned most of our database by username using PostgreSQL hashtext
function to get equal distribution between partitions.

 When splitting databases we usually prepare new partitions in other servers and
then switch all traffic at once to keep our life pleasant.

 Multiple exact copies of proxy database are in use for scaleability and availability
considerations.
CREATE FUNCTION public.get_user_email(text) RETURNS text AS
$_$
 cluster 'userdb';
 run on public.get_hash($1);
$_$ LANGUAGE plproxy SECURITY DEFINER;

CREATE FUNCTION public.get_hash(i_user text) RETURNS integer AS
$_$
BEGIN
 return hashtext(lower(i_user));
END;
$_$ LANGUAGE plpgsql SECURITY DEFINER;

plProxy: Partitioning Partition Functions

 Couple of functions in partconf schema added to each partition:

 partconf.global_id() - gives globally unique keys

 partconf.check_hash() - checks that function call is in right partition

 partconf.valid_hash() - used as trigger function

CREATE FUNCTION public.get_user_email(i_username text) RETURNS text AS
$_$
DECLARE
 retval text;
BEGIN
 PERFORM partconf.check_hash(lower(i_username));

 SELECT email
 FROM users
 WHERE username = lower(i_username)
 INTO retval;

 RETURN retval;
END;
$_$ LANGUAGE plpgsql SECURITY DEFINER;

plProxy: Summary
 plProxy adds 1-10ms overhead when used together with pgBouncer.
 Quote from Gavin M. Roy's blog “After closely watching machine stats for the first 30

minutes of production, it appears that plProxy has very little if any impact on
machine resources in our infrastructure.”

 On the other hand plProxy adds complexity to development and maintenance so it
must be used with care but that is true for most everything.

 Our largest cluster is currently running in 16 partitions on 16 servers.

pgBouncer

 pgBouncer is lightweight and robust connection pooler
for Postgres.

 Low memory requirements (2k per connection by
default). This is due to the fact that PgBouncer does not
need to see full packet at once.

 It is not tied to one backend server, the destination
databases can reside on different hosts.

 Supports pausing activity on all or only selected
databases.

 Supports online reconfiguration for most of the settings.
 Supports online restart/upgrade without dropping client

connections.
 Supports protocol V3 only, so backend version must be

>= 7.4.
 Does not parse SQL so is very fast and uses little CPU

time.

pgBouncer

Database

Applications

tens of
connections

thousands of
connections

pgBouncer Pooling Modes

 Session pooling - Most polite method. When client connects, a server connection
will be assigned to it for the whole duration it stays connected. When client
disconnects, the server connection will be put back into pool. Should be used with
legacy applications that won't work with more efficient pooling modes.

 Transaction pooling - Server connection is assigned to client only during a
transaction. When PgBouncer notices that transaction is over, the server will be put
back into pool. This is a hack as it breaks application expectations of backend
connection. You can use it only when application cooperates with such usage by not
using features that can break.

 Statement pooling - Most aggressive method. This is transaction pooling with a
twist - multi-statement transactions are disallowed. This is meant to enforce
"autocommit" mode on client, mostly targeted for PL/Proxy.

pgBouncer Pictures

 http://www.last.fm/user/Russ/journal/2008/02/21/654597/
 Nice blog about pgBouncer

http://www.last.fm/user/Russ/journal/2008/02/21/654597/

pgBalancer

 Keep pgBouncer small stable and
focused

 pgBalancer is experiment with
existing software to implement
statement level load balancing.

 So we created sample configuration
using existing software that shows
how load could be divided on several
read only databases.

 LVS – Linux Virtual Server is used (
http://www.linuxvirtualserver.org/)

 Different load balancing
algorithms

 Weights on resources. pgBouncer
shopdb_ro2

pgBouncer
shopdb_ro1

client1
clientN

lvs
(master)

lvs
(slave)

keepalived
daemon

http://www.linuxvirtualserver.org/

SODI Framework

 Rapid application development
 Cheap changes
 Most of the design is in metadata.
 Application design stays in sync with

application over time.
 Minimizes number of database

roundtrips.
 Can send multiple recordsets to one

function call.
 Can receive several recordsets from

function call. Database layer
- business logic
- plPython
- PostgreSQL
- SkyTools

AppServer layer:
- java / php(...
- user authentication
- roles rights
- no business logic

Application layer
- java / php ...
- UI logic
. mostly generated
- sodi framework

President

President
Java RW

Apache
PHP

President
Web RO

ConfDB

Kuberner

Host
- Harvester
- Discovery

 President configuration management
application

 Java Client allows updates Web
client view only access. All outside
access to system over HTTPS and
personal certificates can be
generated if needed.

 Kuberner polls confdb periodically for
commands and executes received
commands.

 Harvester runs inside each host and
writes machine hardware information
into file for Kuberner to read

 Discovery plugin collects specific
configuration files and stores them
into ConfDB

 Kuberner: File upload plugin uploads
new configuration files into hosts.

SkyTools

 SkyTools - Python scripting framework and collection of useful database scripts.
Most of our internal tools are based on this framework.

 (centralized) logging and exception handling

 database connection handling

 configuration management

 starting and stopping scripts
 Some of scripts provided by SkyTools

 londiste – nice and simple replication tool

 walmgr - wal standby management script

 serial consumer – Script for executing functions based on data in queue

 queue mover – Move events from one queue into another

 queue splitter – Move events from one queue into several queues

 table dispatcher – writes data from queue into partitioned table

 cube dispatcher - writes data from queue into daily tables

SkyTools: Queue Mover

 Moves data from source queue in one database to another queue in other database.
 Used to move events from online databases to queue databases.
 We don't need to keep events in online database in case some consumer fails to

process them.
 Consolidates events if there are several producers as in case of partitioned

databases.

OLTP

Batch
db

OLTP

Batch
job

Batch
job

queue
mover

queue
mover

SkyTools: Queue Splitter

 Moves data from source queue in one database to one or more queue's in target
database based on producer. That is another version of queue_mover but it has it's
own benefits.

 Used to move events from online databases to queue databases.
 Reduces number of dependencies of online databases.

Producer
password_email

Producer
welcome_email

Queue:
user_events

queue
splitter

Queue:
password_email

Queue:
welcome_email

transactional
mailer

promotional
mailer

SkyTools: Table Dispatcher

 Has url encoded events as data source and writes them into table on target
database.

 Used to partiton data. For example change log's that need to kept online only shortly
can be written to daily tables and then dropped as they become irrelevant.

 Also allows to select which columns have to be written into target database
 Creates target tables according to configuration file as needed

Queue:
call_records

table
dispatcher Tabel: cr

cr_2007_01_01

cr_2007_01_02

...

table
dispatcher

Table: history

history_2007_01

history_2007_02

...

SkyTools: Cube Dispatcher

 Has url encoded events as data source and writes them into partitoned tables in
target database. Logutriga is used to create events.

 Used to provide batches of data for business intelligence and data cubes.
 Only one instance of each record is stored. For example if record is created and

then updated twice only latest version of record stays in that days table.
 Does not support deletes.

Producer
send_welcome_email

Producer
payments

Producer
invoices

Queue:
cube_events cube

dispatcher

Tabel: invoices

invoices_2007_01_01

invoices_2007_01_02

...

Tabel: payments

payments_2007_01_01

payments_2007_01_02

...

Questions, Problems?
 Use SkyTools, plProxy and pgBouncer mailing list at PgFoundry
 skype me: askoja

